ASSIGNMENT SET - I

Department of Mathematics

Mugberia Gangadhar Mahavidyalaya

B.Sc Hon.(CBCS)

Mathematics: Semester-VI

Paper Code: C14T

[Ring Theory and Linear Algebra - 2]

1. Answer all questions

(a) Consider the integral domain $\mathbb{Z}[\sqrt{-3}]$ then show that

(A) 1 and -1 are the only units in this integral domain.

(B) $1 + \sqrt{-3}$, 2 are irreducible element in this integral domain.

(C) But none of $1 + \sqrt{-3}s$ and 2 is prime there.

- (b) If I is an ideal of a ring R, prove that I[x] is an ideal of the polynomial ring R[x].
- (c) If f(x) is a polynomial in F(x) of degree 2 or 3, then show that f(x) is reducible over the field F iff it has a zero in F.
- (d) Let R be an integral domain. Prove that R and R[x] have the same characteristic.
- (e) Let R be a commutative ring with unity 1. Describe, < x > the ideal of R[x] generated by x.
- (f) Let $f(x) = x^4 + 3x^3 + 2x^2 + 2$ and $g(x) = x^2 + 2x + 1 \in \mathbb{Q}[x]$. Find the unique polynomials q(x), $r(x) \in \mathbb{Q}[x]$ such that f(x)=q(x)g(x)+r(x), where either r(x) = 0 or $0 \le \deg r(x) < \deg g(x)$.
- (g) Let $f(x) = x^5 + x^4 + x^3 + x + [3]$, $g(x) = x^4 + x^3 + [2]x^2 + [2]x \in Z_5[x]$. Find q(x), r(x) $\in Z_5[x]$ such that f(x) = q(x)g(x) + r(x), where either r(x) = 0 or $0 \le \deg r(x) < \deg g(x)$.

- (h) Let $R = \mathbb{Z} \oplus \mathbb{Z}$. Show that the polynomial (1,0)x in R[x] has infinitely many roots in R.
- (i) Show that the polynomial ring $Z_4[x]$ over the ring Z_4 is infinite, but $Z_4[x]$ is of finite characteristic.
- (j) In the ring $Z_8[x]$, show that [1] + [2]x is a unit.
- (k) Let R be a commutative ring with 1 and $f(x) = a_0 + a_1 x + \dots + a_n x^n \in R[x]$. If f(x) is a unit in R[x], prove that a_0 is a unit in R and a_i is nilpotent for all i = 1, 2, ..., n.
- (l) Find all units of $\mathbf{Z}[x]$.
- (m) Find all units of $\mathbf{Z}_6[\mathbf{x}]$.
- (n) Let R be an integral domain. Prove that the units of R[x] are contained in R.

2. Answer all question.

- a) Let $f(x) = x^3 + 2x^2 + 1$ and $g(x) = 2x^2 + x + 2$. Check whether f(x) and g(x) reducible/irreducible.
- b) In which the following fields, the polynomial $x^3 312312x + 123123$ is irreducible in [x]?
 - (A) The field F_3 with 3 elements.
 - (B) The field *Q* of rational numbers
 - (C) The field F_{13} with 13 elements.
- c) Which of the following is an irreducible factor of $x^{12} 1$ over Q?
 - (A) $x^8 + x^4 + 1$
 - (B) $x^4 + 1$
 - (C) $x^4 x^2 + 1$
- d) Let R be the ring $Z[x]/((x^2 + x + 1)(x^3 + x + 1))$ and I be the ideal generated by 2 in R. Calculate the cardinality of the ring R.

3. Answer all questions.

- a) Define the Euclidean domain. If F is field, then the polynomial ring F[x] is a Euclidean domain.
- b) Define principal ideal domain (PID). Prove that every Euclidean domain is a principal ideal domain (PID).
- c) Let R be a commutative ring with 1. Then the following conditions are equivalent.
 - (A) R is a field.

(B) R[x] is a Euclidean domain.

- (C) R[x] is a PID.
- d) Let R be the Euclidean domain such that R is not a field. Then show that the polynomial ring R[x] is always a unique factorization domain (UFD), but not a principal ideal domain (PID).
- e) Check whether the ring $Q[X, Y] / \langle X \rangle$ is PID or not.
- f) Show that $Z[\sqrt{n}]$ is a Euclidean domain for n= -1, -2, 2, 3.

4. Answer all questions.

- a) Define the dual space of a vector space V. If V is a vector space of dimension n over a field F, then the dimension of its dual space is also n.
- b) Let V be a finite dimensional vector space with dual space V^{*}, then every ordered basis for V^{*} is the dual basis for some basis for V.
- c) Define the minimal polynomial, annihilator.
- d) State and prove Cayley Hamilton theorem.
- e) If A and B are similar matrices with entries from K, then prove that $m_A(x) = m_B(x)$.
- f) Let V be vector space over K, let $p(x) \in K[x]$ and let $T \in L(V)$. Show that λ is an eigenvalue of T iff $p(\lambda)$ is an eigenvalue of p(T).
- g) Let V be vector space over R of dimension n=3 and let $T \in L(V)$. Show that V has a non zero proper T-invarient subspace.

5. Answer all questions

- a) Define inner product space. Let V be vector space over F, show that the sum of two inner products on V is an inner product on V.
- b) Is the difference of two inner products an inner product?
- c) Show that a positive multiple of an inner product is an inner product.
- d) Verify that the standard inner product on F^n is an inner product.
- e) Define orthogonal and orthogonal complement in an inner product space.
- f) Find the orthogonal complement of the subspace P , generated by the vectors (1,1,0) and (0,1,1) in \mathbb{R}^3 .
- g) **Theorem:** An orthogonal set of non zero vectors is linearly independent.
- h) Theorem: Let V be an inner product space and let β_1, β_2, ..., β_n be any independent vectors in V. Then one may construct orthogonal vectors α₁, α₂, ..., α_n in V such that for each k = 1,2, ..., n the set {α₁, α₂, ..., α_k} is a basis for the subspace spanned by β₁, β₂, ..., β_k.

- i) Prove that every finite dimensional inner product space has an orthonormal basis.
- j) State and prove **Gram-Schmidt orthonormalization**.
- k) Let W be a subspace of finite dimensional inner product space V. Then $W^{\perp\perp} = W$.
- Theorem: Let W be a finite dimensional subspace of an inner product space V and let E be the orthogonal projection of V on W. Then E is an idempotent linear transformation of V onto W, W[⊥] is the null space of E, and V=W ⊕ W[⊥].
- m) **Theorem:** Let V be finite dimensional inner product space, and f be a linear functional on V. Then there exist a unique vector β in V such that $f(\alpha) = (\alpha | \beta)$ for all α in V.
- n) Define Self adjoint and normal operators.
- o) **Proposition:** Let *T* be self adjoint operator on an inner product space *V*.
 - (i) For all $v \in V$, (Tv, v) is a real number.

(ii) If (Tv, v) = 0, for all $v \in V$, then $T \equiv 0$.

(iii) If $T^k v = 0$ for some k > 1, then Tv = 0.

Further if V is finite dimensional, then

(iv)all roots of characteristic polynomial of T are real;

(v) eigenvectors corresponding to distinct eigenvalues are orthogonal.

- p) **Proposition:** Let *T* be a normal operator on an inner product space *V* over *F*.
 - (i) $||Tv|| = ||T^*v||$ for all $v \in V$.
 - (ii) If for $v \in V$, $Tv = \lambda v$, $\lambda \in F$, then $T^*v = \overline{\lambda}v$.
 - (iii) Eigenvectors corresponding to distinct eigenvalues of ${\cal T}$ are orthogonal.

(iv) If $T^k v = 0$, for some $k \ge 1$, then Tv = 0.

- q) Prove the **Spectral Theorem.** Let T be a triangulable linear operator on a finite dimensional inner product space V over F. Then T is normal iff V has an orthonormal basis consisting of eigenvectors of T.
- r) Let V be finite dimensional complex inner product space and let $T \in L(V)$. Then T is normal if and only if T is orthogonally diagonalizable.

END