ASSIGNMENT SET - I

Department of Mathematics

Mugberia Gangadhar Mahavidyalaya

B.Sc Hon.(CBCS)

Mathematics: Semester-VI

Paper Code: C14T

[Ring Theory and Linear Algebra - 2]

1. Answer all questions

(a) Consider the integral domain $\mathbb{Z}\lceil\sqrt{-3}]$ then show that
(A) 1 and -1 are the only units in this integral domain.
(B) $1+\sqrt{-3}, 2$ are irreducible element in this integral domain.
(C) But none of $1+\sqrt{-3}$ s and 2 is prime there.
(b) If I is an ideal of a ring R, prove that $I[x]$ is an ideal of the polynomial ring $R[x]$.
(c) If $f(x)$ is a polynomial in $F(x)$ of degree 2 or 3 , then show that $f(x)$ is reducible over the field F iff it has a zero in F .
(d) Let R be an integral domain. Prove that R and $R[x]$ have the same characteristic.
(e) Let R be a commutative ring with unity 1 . Describe, $\langle x\rangle$ the ideal of $R[x]$ generated by x.
(f) Let $f(x)=x^{4}+3 x^{3}+2 x^{2}+2$ and $g(x)=x^{2}+2 x+1 \in \mathbf{Q}[\mathrm{x}]$. Find the unique polynomials $\mathrm{q}(\mathrm{x}), \mathrm{r}(\mathrm{x}) \in \mathbf{Q}[\mathrm{x}]$ such that $f(x)=q(x) g(x)+r(x)$, where either $r(x)=0$ or $0 \leq \operatorname{deg} r(x)<\operatorname{deg} g(x)$.
(g) Let $f(x)=x^{5}+x^{4}+x^{3}+x+[3], \quad g(x)=x^{4}+x^{3}+[2] x^{2}+[2] x \in Z_{5}[x]$. Find $\mathrm{q}(\mathrm{x}), \mathrm{r}(\mathrm{x}) \in Z_{5}[x]$ such that $f(x)=q(x) g(x)+r(x)$, where either $r(x)=0$ or $O \leq \operatorname{deg} r(x)<\operatorname{deg} g(x)$.
(h) Let $\mathrm{R}=\mathbf{Z} \oplus \mathbf{Z}$. Show that the polynomial $(1,0) x$ in $R[x]$ has infinitely many roots in R.
(i) Show that the polynomial ring $Z_{4}[x]$ over the ring Z_{4} is infinite, but $Z_{4}[x]$ is of finite characteristic.
(j) In the ring $Z_{8}[x]$, show that $[1]+[2] x$ is a unit.
(k) Let R be a commutative ring with 1 and $f(x)=a_{0}+a_{1} x+\cdots+a_{n} x^{n} \in R[x]$. If $f(x)$ is a unit in $\mathrm{R}[x]$, prove that a_{0} is a unit in R and a_{i} is nilpotent for all $i=1,2, \ldots, n$.
(1) Find all units of $\mathbf{Z}[\mathrm{x}]$.
(m) Find all units of $\boldsymbol{Z}_{6}[\mathrm{x}]$.
(n) Let R be an integral domain. Prove that the units of $\mathrm{R}[\mathrm{x}]$ are contained in R.

2. Answer all question.

a) Let $f(x)=x^{3}+2 x^{2}+1$ and $g(x)=2 x^{2}+x+2$. Check whether $f(x)$ and $g(x)$ reducible/irreducible .
b) In which the following fields, the polynomial $x^{3}-312312 x+123123$ is irreducible in $[x]$?
(A) The field F_{3} with 3 elements.
(B) The field Q of rational numbers
(C) The field F_{13} with 13 elements.
c) Which of the following is an irreducible factor of $x^{12}-1$ over Q ?
(A) $x^{8}+x^{4}+1$
(B) $x^{4}+1$
(C) $x^{4}-x^{2}+1$
d) Let R be the ring $Z[\mathrm{x}] /\left(\left(x^{2}+x+1\right)\left(x^{3}+x+1\right)\right)$ and I be the ideal generated by 2 in R. Calculate the cardinality of the ring R.

3. Answer all questions.

a) Define the Euclidean domain. If F is field, then the polynomial ring $F[x]$ is a Euclidean domain.
b) Define principal ideal domain (PID). Prove that every Euclidean domain is a principal ideal domain (PID).
c) Let R be a commutative ring with 1 . Then the following conditions are equivalent.
(A) R is a field.
(B) $R[x]$ is a Euclidean domain.
(C) $R[x]$ is a PID.
d) Let R be the Euclidean domain such that R is not a field. Then show that the polynomial ring $R[x]$ is always a unique factorization domain (UFD), but not a principal ideal domain (PID).
e) Check whether the ring $\boldsymbol{Q}[X, Y] /<X\rangle$ is PID or not.
f) Show that $Z[\sqrt{n}]$ is a Euclidean domain for $n=-1,-2,2,3$.

4. Answer all questions.

a) Define the dual space of a vector space V. If V is a vector space of dimension n over a field F, then the dimension of its dual space is also n.
b) Let V be a finite dimensional vector space with dual space V^{*}, then every ordered basis for V^{*} is the dual basis for some basis for V.
c) Define the minimal polynomial, annihilator.
d) State and prove Cayley Hamilton theorem.
e) If A and B are similar matrices with entries from K, then prove that $m_{A}(x)=m_{B}(x)$.
f) Let V be vector space over K, let $p(x) \in K[x]$ and let $T \in L(V)$. Show that λ is an eigenvalue of T iff $p(\lambda)$ is an eigenvalue of $p(T)$.
g) Let V be vector space over R of dimension $n=3$ and let $T \in L(V)$. Show that V has a non zero proper T -invarient subspace.

5. Answer all questions

a) Define inner product space. Let V be vector space over F , show that the sum of two inner products on V is an inner product on V .
b) Is the difference of two inner products an inner product?
c) Show that a positive multiple of an inner product is an inner product.
d) Verify that the standard inner product on F^{n} is an inner product.
e) Define orthogonal and orthogonal complement in an inner product space.
f) Find the orthogonal complement of the subspace P, generated by the vectors $(1,1,0)$ and $(0,1,1)$ in \mathbb{R}^{3}.
g) Theorem: An orthogonal set of non zero vectors is linearly independent.
h) Theorem: Let V be an inner product space and let $\beta_{-} 1, \beta_{-} 2, \ldots, \beta_{-} n$ be any independent vectors in V . Then one may construct orthogonal vectors $\alpha_{1}, \alpha_{2}, \ldots \alpha_{n}$ in V such that for each $\mathrm{k}=1,2, \ldots, \mathrm{n}$ the set $\left\{\alpha_{1}, \alpha_{2}, \ldots \alpha_{k}\right\}$ is a basis for the subspace spanned by $\beta_{1}, \beta_{2}, \ldots, \beta_{k}$.
i) Prove that every finite dimensional inner product space has an orthonormal basis.
j) State and prove Gram-Schmidt orthonormalization.
k) Let W be a subspace of finite dimensional inner product space V . Then $\mathrm{W}^{\perp}=\mathrm{W}$.

1) Theorem: Let W be a finite dimensional subspace of an inner product space V and let E be the orthogonal projection of V on W . Then E is an idempotent linear transformation of V onto $\mathrm{W}, \mathrm{W}^{\perp}$ is the null space of E , and $\mathrm{V}=\mathrm{W} \oplus \mathrm{W}^{\perp}$.
m) Theorem: Let V be finite dimensional inner product space, and f be a linear functional on V . Then there exist a unique vector β in V such that $\mathrm{f}(\alpha)=(\alpha \mid \beta)$ for all α in V .
n) Define Self adjoint and normal operators.
o) Proposition: Let T be self adjoint operator on an inner product space V.
(i) For all $v \in \mathrm{~V},(T v, v)$ is a real number.
(ii) If $(T v, v)=0$, for all $v \in \mathrm{~V}$, then $T \equiv 0$.
(iii)If $T^{k} v=0$ for some $\mathrm{k}>1$, then $T v=0$.

Further if V is finite dimensional, then
(iv) all roots of characteristic polynomial of T are real;
(v) eigenvectors corresponding to distinct eigenvalues are orthogonal.
p) Proposition: Let T be a normal operator on an inner product space V over F.
(i) $\|T v\|=\left\|T^{*} v\right\|$ for all $v \in \mathrm{~V}$.
(ii) If for $v \in \mathrm{~V}, T v=\lambda v, \lambda \in F$, then $T^{*} v=\bar{\lambda} v$.
(iii)Eigenvectors corresponding to distinct eigenvalues of T are orthogonal.
(iv) If $T^{k} v=0$, for some $\mathrm{k} \geq 1$, then $T v=0$.
q) Prove the Spectral Theorem. Let T be a triangulable linear operator on a finite dimensional inner product space V over F . Then T is normal iff V has an orthonormal basis consisting of eigenvectors of T .
r) Let V be finite dimensional complex inner product space and let $T \in$ $L(V)$. Then T is normal if and only if T is orthogonally diagonalizable.

